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Abstract-Recent NASA mission failures (e.g., Mars Polar 
Lander and Mars Orbiter) illustrate the importance of having 
an efficient verification and validation process for such 
systems. One software error, as simple as it may be, can 
cause the loss of an expensive mission, or lead to budget 
overruns and crunched schedules. Unfortunately, traditional 
verification methods cannot guarantee the absence of errors 
in software systems. Therefore, we have developed the CGS 
static program analysis tool, which can exhaustively analyze 
large C programs. CGS analyzes the source code and 
identifies statements in which arrays are accessed out Of 
bounds, or, pointers are used outside the memory region 
they should address. This paper gives a high-level 
description of CGS and its theoretical foundations. It also 
reports on the use of CGS on real NASA software systems 
used in Mars missions (from Mars Pawinder to Mars 
Exploration Rover) and on the International Space Station. 
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1. INTRODUCTION 

Recent NASA mission failures (e.g., Mars Polar Lander and 
Mars Orbiter) illustrate the difficulty of building embedded 
software systems for space exploration and the importance 
of having an efficient verification and validation (V&V) 
process for such systems. One software error, as simple as it 
may be, can cause the loss of an expensive mission ($250 
millions at least for a mission to Mars), or lead to budget 
overruns and crunched schedules. For example, the loss of 
both spacecrafts in the Mars Surveyor 98 (the lander and the 
orbiter) mission costs $328 millions to NASA; valuable 
scientific data could not be obtained either. 

650-604-0775 
arnaud@email.arc.nasa.rrov 

Unfortunately, traditional verification methods (such as 
testing) cannot guarantee the absence of errors in software 
systems. Therefore, it is important to build verification tools 
that exhaustively check for as many classes of errors as 
possible. Static program analysis is a verification technique 
that identifies faults, or certifies the absence of faults, in 
software without having to execute the program. Using the 
formal semantic of the programming language (C in our 
case), this technique analyses the source code of a program 
looking for faults of a certain type. We have developed a 
static program analysis tool, called C Global Surveyor 
(CGS), which can analyze large C programs for embedded 
software systems. CGS analyzes the source code of C 
programs and identifies statements in which arrays are 
accessed out of bounds, or, pointers are used outside the 
memory region they should address. CGS does its 
verification using static analysis techniques based on the 
theory of Abstract Interpretation. Even though the analysis 
predicts what will happen at runtime, it is performed at 
compile time. Therefore, it does not require executing the 
program and providing input cases. Moreover, CGS analysis 
is conservative in the sense that it performs all checks 
necessary to find all errors of the same type (out-of-bound 
array accesses). 

This paper gives a high-level description of the architecture 
of CGS and the theoretical foundations (Abstract 
Interpretation) supporting the correctness of the analysis. 
More importantly, we report on the use of CGS on real 
NASA software systems. We have analyzed flight software 
used in Mars missions (from Mars PathFinder to Mars 
Exploration Rover) as well as software used to control 
experiments on the International Space Station. The sizes of 
the software systems we analyzed range from 40 to 600 
KLOCs. The analysis times range from 5 minutes to 2 hours 
on PC platforms running Linux. The analyses did not require 
any modifications of the original source code. 

2. STATIC ANALYSIS FOR v&v 
The goal of static program analysis is to assess properties of 
a program without executing the pro- Static analysis has 
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its infancy in compiler optimization. Most compilers do not 
perform verification beyond type checking and superficial 
syntactic checks because they focus on getting quick 
feedback to the code developer. However, they can rely on 
fairly sophisticated analyses for code optimization because 
the user is willing to pay a penalty (in terms of compilation 
time) and obtain optimized code. In other words, it is fine to 
spend a little more time optimizing the code (which is done 
once) if it makes the numerous executions run faster. Static 
program analysis pushes the idea further by using even more 
sophisticated analyses to find, at compile-time, bugs that can 
happen at run-time. The rationale is that it is worth spending 
time analyzing the software if it cuts down on testing. This is 
what makes static analysis attractive to the verification 
community. 

Several techniques can be used to perform static analysis. 
Theorem proving, data flow analysis [12], constraint solving 
[l], and abstract interpretation [4,5] are among the most 
popular. We could devote an entire article, if not several, to 
the comparison of these techniques. However, in this paper, 
we only focus on one technique, abstract interpretation, and 
show its applicability to real embedded software. 

The theory of Abstract Interpretation pioneered by Patrick 
and Radhia Cousot in the mid 70s provides algorithms for 
building program analyzers which can detect all runtime 
errors by exploring the text of the program [4,5]. The 
program is not executed and no test case is needed. A 
program analyzer based on Abstract Inteqxetation is a kind 
of theorem prover that infers properties about the execution 
of the program from its text (the source code) and a formal 
specification of the semantics of the language (which is built 
in the analyzer). The fundamental result of Abstract 
Interpretation is that program analyzers obtained by 
following the formal framework defined by Patrick and 
Radhia Cousot are guaranteed to cover all possible 
execution paths. 

Runtime errors are errors that cause exceptions at runtime. 
Typically, in C ,  either they result in creating core files or 
they cause data corruption that may cause crashes. In this 
study we mostly looked for the following runtime errors. 

(1) Access to un-initialized variables, i.e., variables that 
are even though they have not been assigned a value 
yet. 

(2) Access to un-initialized pointers, i.e., pointers that are 
de-referenced (i.e., attempt to read or write the 
memory region pointed by the pointer) without having 
assigned to a memory region. 

(3) Out-of-bound array access, e.g., a[ZO] where a is an 
array of size less or equal to 10. 

(4) Arithmetic underflow/overflow, e.g., the program does 
not take into account that the storage of a computed 

2 

value might take more bits than is allocated for the 
variable holding the value. 

( 5 )  Invalid arithmetic operations, e.g., dividing by zero or 
taking the square root of a negative number. 

(6) Non-terminating loops, e.g., the exit condition of a 
loop<can never be evaluated to false (Note that most 
embedded pro,- contain non-terminating loops, 
such as ‘while true do .-.;’ by design). 

(7) Non-terminating calls, i.e., the control flow of a 
program never returns from the call to a function 
(because this function has a non-tenninating loop for 
example). 

The price to pay for exhaustive coverage is incompleteness: 
the analyzer can raise false alarms on some operations that 
are actually safe. However, if the analyzer deems an 
operation safe, then this property holds for all possible 
execution paths. The program analyzer can also detect 
certain runtime errors which occur every time the execution 
reaches some point in the program. Therefore, there are 
basically two complementary uses of a program analyzer: 

(1) as a debugger that detects runtime errors statically 
without executing the program, and 

(2) as a preprocessor that reduces the number of 
potentially dangerous operations that have to be 
checked by a traditional validation process (code 
reviewing, test writing, and so on). 

The first use is called certification; the goal is to prove the 
absence of errors of a certain class, thus, alleviating the need 
for testing for this class of errors. The second use is akin to 
debugging; basically, the developer tries to flush as many as 
bugs as he can from the code before it goes to the 
verification. This requires that the static analyzer achieves a 
good selectivity - the percentage of operations which are 
proven to be safe by the program analyzer. Indeed, if 50% of 
all operations in the program are marked as potentially 
dangerous by the analyzer, there are no benefits to using 
such techniques. In the rest of the paper, we refer to these 
two different types of static analysis as certification and 
debugging. 

The question is: when should one use debugging or 
certification? On one hand, debugging is fast, but 
incomplete (since it does not find all the bugs). On the other 
hand, certification is complete, but it takes quite a long time. 
So, which one should one use? The answer is both,. but not 
at the same stage of the software development process. Let 
us put it in terms of the V diagram shown in Figure 1. Black 
dash arrows indicate the flow of verification while blue 
arrows indicate what development phase is validated by 
what validation phase. In general, static analysis applies to 
the phases in the yellow zone. 
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Figure 1.. Place of Static Analysis in S / W  Lifecycle. 

Let us ignore the software detailed design phase (because it 
requires a special type of static analysis). Debugging is the 
most useful in the software coding phase. The developer can 
quickly find a range of bugs and gain some confidence that 
the software might not crash at run-time. Debugging could 
also be applied in the unit testing and software integration 
phase. However, debugging does not give you any coverage 
information (as opposed to sophisticated testing techniques). 
Therefore, it cannot measure how well you have tested the 
units or the system. Now, certification gives you that 
coverage (actually, it guarantees 100% coverage of all the 
control and data paths). In general, its application for unit 
testing requires writing (or generating) drivers for each of 
the units. This pre-required step might take some time, but 
the analyses should be fairly fast and precise, especially if 
the size of each unit is kept to a few thousands of lines of 
code. Certification can be very useful in the phase of system 
integration. Since the whole system is put together, the 
analysis only considers a coherent set of inputs to each 
function and module. This can potentially yield good 
precision. The question is: can it really be done for realistic 
software systems, especially those used in aerospace? This is 
what this work tries to answer. 

C Global Surveyor (CGS) is a scalable, precise static 
analyzer that detects memory errors in C programs. Simply 
stated, CGS takes the scurce code of a sofhvare system 
written in C, builds an abstract model of it, and analyzes it to 
detect errors such as out-of-bound array accesses and de- 
referencing of null pointers. CGS analysis is exhaustive (all 
possible execution paths are explored), conservative (all 
errors, including potential ones, are flagged), and does not 
require test cases or even executing the program. What 
differentiate CGS from other static analyzers is its ability to 
scale to large systems (more than 250 KLW) and its 
precision (less than 15% false positives). Scalability is a 
minimal requirement to be useful to any NASA mission. 
Precision is critical to user acceptance, since engineers tend 
to get discouraged by the high number of warnings produced 
by static analyzers. 

Abstract interpretation 

Abstract Interpretation 
developed by Patrick 

[5,8,9] is a theoretical framework 
and Radhia Cousot that gives a 

methodology for constructing static analyses. The mjor  
feature of a static analyzer based on Abstract Interpretation 
consists of the mathematical guarantee that all properties 
hereby computed hold for all possible execution paths of the 
program. The core idea behind this theory is the careful use 
of the notion of approximation: all possible values a 
variable can take at a certain program point are 
approximated by a set that can be compactly represented 
like an interval in the case of scalar variables for example. 
All possible values of the variable are guaranteed to lie 
within this set, thus ensuring the soundness of the analysis. 
However, infeasible value assignments of the variable can 
be introduced because of the approximation process. This 
results into a number of false alarms, where the analyzer 
detects a potential problem at some program statement 
because of spurious information whereas the program is safe 
in reality. The main point though is that a statement deemed 
as safe can never cause an emor. This is the backbone of 
abstract-interpretation-based program certification. 

The choice of the approximation guides the construction of 
the static analyzer. Once an approximation scheme has k n  
designed for all objects manipulated by the family of 
programs considered, we construct a translator from the 
program source into a system of semantic equations. These 
equations model the flow of information between the 
statements of the program. It is similar in its structure to the 
code generation phase of a compiler. This phase is called the 
build in CGS. Any solution of the semantic equations is a 
sound approximation of all possible values of the program 
variables. Since we want to limit the number of false alarms 
caused by the approximation we are interested in the 
smallest solution of these equations which is guaranteed to 
exist (see [5,7] for more details). Unfortunately this smallest 
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solution is not always computable or can take too much time 
to compute. Therefore we have to use heuristics that can 
lead us to a solution that is “as good as possible” (by using 
widening and narrowing operators [5,6,13]) with reasonable 
execution times. This phase is called the solve in CGS. 
Because of the sub-optimality of the solution computed 
during this phase, CGS allows the user to iterate the solve in 
a feedback loop, thus enabling a stepwise refinement of the 
results. Intuitively, the process of abstract intelpretation is 
very similar to that of designing a system in control theory: a 
physical system is first modeled using a system of partial 
differential equations which is not directly solvable in 
general and for which approximate numerical resolution 
schemes are employed. 

Architecture 

Large programs as those developed for the Mars Exploration 
Program pose a number of challenges in designing an 
efficient static analyzer. Determining how objects and 
variables may be connected one to each in memory via 
pointers is a problem known as pointer analysis. This is a 
very active research area which has produced several good 
algorithms [ 14,10,11] over the years that are able to scale to 
million lines of code. However these algorithms cannot be 
directly applied in our case because they abstract away all 
information about positions in arrays and objects which 
would cause an unacceptable level of false alarms. CGS 
computes numerical relationships between the scalar 
program variables that are used for indexing arrays, 
controlling loop iterations and performing pointer 
arithmetic. These numerical relationships are hereafter used 
to perform an array-sensitive pointer analysis. This is 
illustrated in Figure 2 where all elements of the array S.f are 
memory blocks of size 100 except the first one, thus causing 
a memory error during the execution of the loop nest. 

Classical abstract interpretation algorithms which can 
discover numerical relationships between program variables 
do not scale to the large programs we were considering. We 
tackled the time complexity problem in two different 
directions. First, we improved the scalability of existing 
algorithms using adaptive variable clustering as described 
below. Second, we designed a distributed architecture for 
CGS that enables the distribution of the static analysis 
algorithms over a cluster of machines. 

Numerical invariants for (i = 0 ;  i e 10;  i++) 

s.fIilIj1 - - - - ;  

0 <= j < 100 

for ( j  0 ;  j c 100; j++) 

Points-to graph 
I- 

U 

Figure 2. Combining numerical invariants and 
analysis 

pointer 

The second major problem in the design of a scalable static 
analyzer is the management of the memory. The number of 
artifacts produced by a static analyzer is tremendous. For 
example, the semantic equations of the smallest flight 
software we have analyzed (140 KLOC) cannot even fit all 
in memory. This requires a smart memory management in 
which we can dynamically load and unload artifacts. We 
chose a database-centric architecture in which a relational 
database plays the role of a persistent network-transparent 
memory. This also makes the implementation of distributed 
analysis algorithms simpler since there is no stream of data 
between two processes on two different hosts, everything 
being centralized within the database. Moreover we do not 
have to handle mutual exclusion since this is already part of 
the database management system. 

Innovations 

To achieve the main goals of CGS, i.e., be scalable and very 
precise, we had to go beyond the state-of-the-art in research 
in static analysis. We now describe the research innovations 
that had to take place to achieve our goals. The first two 
innovations work towards improving scalability while the 
last two target precision. The other two contribute to both 
scalability and precision. 

CGS relies on scalable abstract numerical domains, 
switching from one to the other in an adaptive manner. We 
rely on two main abstract domains. First, numerical intervals 
allow us to keep track of information about integer 
variables. Second, we can also express numerical constraints 
between pairs of variables (e.g., x-y 5 c) using the 
difference-bound matrices domain. It allows for example to 
track constraints between loop indices and variables 
appearing in the loop body. Unfortunately, this domain does 
not scale, and therefore, it applies only to small sets of 
variables. In [2], these sets are computed syntactically. We 
use an adaptive method to keep the size of those sets small. 
Future iteration of CGS should include a generalization of 
this technique that wiU allow us to apply even more 
powerful abstract domains (e.g., polyhedra [6]) to even 
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smaller sets of constraints. This means that an improvement 
in scalability will yield greater precision. 

CGS uses distributed algorithms. We are not aware of any 
static analyzer that can distribute the analysis over several 
processors; CGS can. This gives CGS a speed advantage 
since PC machines now come with dual processors and it 
also reduces our memory requirements (note that all 
intermediary results are stored in a common database 
residing on a disk), thus reducing the risk of time-consuming 
swapping cycles. 

CGS mixes flow sensitive and flow insensitive analyses. 
Other static analyzers allow using one or the other. CGS 
takes a different approach since it depends on the manners 
variables are allocated. Thus, top-level variables @e., local 
variables whose addresses are not taken) are handled in a 
flow-sensitive manner while heap data are treated in a flow- 
insensitive manner. 

CGS perfoims a mutual incremental refinement of the 
points-to (which determines memory locations, or addresses) 
and numerical information (which computes possible 
offsets). Traditionally, the points-to analysis is done before 
any analysis (especially before the numerical analysis). In 
CGS, both analyses feed off each other in an iterative 
process; each iteration performs an incremental refinement 
on the precision of the analyses until a global fixed point is 
reached. 

CGS relies on a precise representation of pointer arithmetic 
in complex data structures such as multi-dimensional arrays. 
This allows us to compute precise offsets for array elements, 
even in the case of multidimensional arrays [15]. 

CGS also performs a points-to analysis that is an extension 
of Das’ algorithm [lo]. Das noticed that being precise about 
the first level (or depth) in graphs of pointers increases 
drastically the precision of points-to analysis for most C 
programs. It turns out that for MPS-based software we need 
to be precise to the second or third level. We therefore 
implemented a multi-level flow points-to analysis that 
generalizes Das’ idea. 

Some of these innovations formed the basis for developing 
CGS; others were the results of constantly testing our ideas, 
and their implementation, with real NASA software systems 
such as the MPF and DS1 flight software. 

Results interpretation 

By the end of the analysis CGS has assigned a set of 
possible addresses together with an index range to each 
memory access operation of the program. The array-bound 
checking process simply scans these data and checks the 
indices against the size of the objects being accessed. We 
use a fourcolor code (green, orange, red, black) to present 
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the results to the user, If the set of indices accessed during 
the operation lies within the range of memory cells spanned 
by the object being dereferenced, the operation is deemed 
safe and colored in green. If the set of indices being 
accessed is completely disjoint from the memory area 
covered by the object, this is a definite memory violation 
that will occur whenever the operation is performed. The 
operation is flagged in red. If the set of indices being 
accessed is empty, this simply means that no execution path 
ever leads to this operation, in other words this is dead code. 
We color the operation in black. In all other cases we color 
the operation in orange. An operation flagged in orange has 
two possible meanings: it is either an intermittent error that 
occurs for certain paths of execution but not for others, or it 
is a false alarm due to spurious values for the index caused 
by the approximation scheme. The tables stored in the 
database containing the numerical relationships and the 
points-to information can then be browsed during an 
interactive SQL session in order to bring out the causes of a 
red or orange error. This turned out to be quite useful in 
practice and this task could be easily performed by newly 
trained users from Marshall Space Center on software 
running on the International Space Station. 

4. APPLICATIONS OF CGS 

The MPF software family 

What we call the MPF software family consists of flight 
software systems that were developed based on the flight 
software system for the Mars PathFinder mission. The first 
to “re-use’’ the MF’F flight software was the Deep Space One 
@Sl) mission. DS1 was not a Mars mission; it was a 
technology demonstration mission. For example, DS1 flew 
the Remote Agent experiment, which demonstrated the first 
use of planning and scheduling technology to control a 
spacecraft. We analyzed the conventional part of the flight 
software (Le., the one directly inherited from MPF). Since 
the goals of DS1 were different from the goals of MPF, the 
flight software was slightly different. For example, since 
DSl did not land on any planet, the Entry/Descent/Landmg 
module was not used in DS 1. The second re-use of MPF was 
done for the Mars Exploration Rover mission. Actually, the 
core of the development team for MER was the same as the 
development team for MPF. So, in some sense, the heritage 
from MPF was more direct than for DSl. However, the 
flight software (more than) quadrupled because of increased 
functionalities and changes in the overall design of the 
spacecraft. For example, while both the rover and the 
spacecraft had their own software on MPF, MER went a 
different route and had the rover controlled the whole 
spacecraft, even during cruise and landing. 

From a static analysis point of view, the three systems are 
quite similar since they use the same (object-oriented) 
software architecture as well as some modules (such as the 
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Size (in KLOCs) 

quaternion library). For example, all systems are multi- 
threaded and they use the threading package of VxWorks. 
Communication between threads is done using message 
queues. Even though messages are quite complex (e.g., they 
contain not only data but also references to callback replies), 
they are serialized into arrays of integers. Thus, in some 
cases, the analysis loses information about for example the 
call flow, or the sizes of matrices passed from one module to 
the next. This was a major source of imprecision in our 
analyses. Another important factor is the size of these 
applications. Overall, the increased complexity of the 
missions was reflected in the size of each application. As 
Table 1 shows, the size ranges from 140 KLOCs to 540 
KLOCs and the number of threads increased from 23 to 
more than one hundred in MER. 

Table 1. Software complexity for MPF family. 

MPF DS 1 MER 

140 280 540 

#threads 23 40 loo+ 

The results for the MPF family were very good. This is not 
surprising since we design CGS to work well for this family. 
In fact, we used the MPF and DSl software as testbeds 
during the development of CGS. It made for uneasy 
debugging since they are quite large software, but it gave us 
a very realistic "tuning" base. Overall, we obtained about 
85% of precision (remember that precision is the percentage 
of checks that are classified with certainty as correct, 
incorrect, or unreachable). The average running times were 
about 1.5 hours for MPF and about 3 hours for DSl. The 
analysis of MER took much longer (between 1 and 2 days). 
There are two major reasons for that. First, the sheer size of 
MER (540 KLWs) is a big factor. This translated into 
storing tables (especially for alias information) holding two 
or three millions artifacts in the &itabase. Loading and 
populating such big tables take a lot of time. Moreover, their 
storage in memory (which is limited to 1 GB per process on 
our machines) needs to be optimized. Unfortunately, it is 
mostly done at the expense of the analysis time. Overall, we 
were disappointed in the performance of the database we 
used (PostgreSQL). Manipulations of large tables were slow 
even with the use of indices. Actually, we are still actively 
searching for ways to improve the database response time. 
The second reason for the slow response times lies in the 
imprecision of our alias analysis. As mentioned above, 
callback replies are cast as integer when they are placed in 
messages. This causes the analysis to lose track of them and 
therefore to make some conservative approximations about 
the binding of these replies. This resulted in creating big 
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strongly connected components (SCC) in the call graph (in 
other words, recursive calls involving lots of functions). Our 
firt run of CGS on MER showed an SCC of more than 
loo00 functions (almost all the functions in MER since there 
are about 11588 functions in our version of MER). By 
making the analysis ignore some of the low level functions 
we were able to cut this set to lo00 functions. This is still a 
huge drain on the response time since the analysis needs to 
perform a fix-point iteration over every SCC. 

Obviously, more work is needed to refine the precision and 
the response time as flight software systems are getting 
larger and larger as well as more and more complex. For 
example, the flight software system for MSL is expected to 
reach 1 h4LOCs. Yet, we are quite happy with the current 
results, especially when we compare them with the results 
we obtain using a commercial static analyzer as described in 
[3]. We can now analyze the whole system without having to 
cut it in pieces. Moreover, our processing time for the whole 
system (540 KLOC) is of the same order as the average 
processing time of the commercial analyzer for a 40 KLOC- 
size slice. 

Shuttle and Space Station Flight Software 

The application of CGS to flight software for the shuttle and 
the International Space Station (ISS) is part of a technology 
infusion effort. Our goal is to teach NASA developers to use 
CGS and, from then on, have them use CGS on a regular 
basis in their projects. In this particular case, three 
developers from the Marshall Flight Space Center (MSFC) 
came to NASA Ames, got train in using CGS, and used CGS 
on flight software systems they had developed at MSFC. 
Overall, we analyzed five modules. 

The Application Processor (AP) module is part of the 
flight software for the Advanced Video Guidance 
Sensor (AVGS), which flew as experiments on two 
Space Shuttle missions and will be the primary sensor 
for the close-proximity operation in the DART 
mission. The DART mission seeks to advance the state 
of the art in safe and reliable autonomous rendezvous 
capabilities at NASA. The AP module represents about 
12 i a o c s  of C code. 

The IO Processor (IOP) module is also part of the 
AVGS. It represents 7 KLOCs of C code. 

The goal of the Materials Science Research Rack 
(MSRR) aboard the ISS is to offer capabilities to 
facilitate a wide range of materials science 
investigations. For example, the facility will provide 
the common subsystems and interfaces required for the 
operation of experiment hardware, accommodate 
telescience capabilities, and provide the capability for 
simultaneous on-orbit processing. This application 
consists of 55 KLOCs of C code. 



(4) The Urine Processor Assembly (UPA) is part of the 
life support in the ISS. The LJPA controller consists of 
47 KLWs of C code. 

(5) Finally, the last module is the boot loader 
(BOOTLDR) for the shuttle engine controller. It consis 
of 7 KLOC of C code. The MSFC development team is 
also in the process of using static analyzers (including 
CGS) to analyze the whole controller. However, we do 
not have results for this experiment. 

The results for these modules were neither good nor bad. 
First, the response times of these analyses are very 
satisfying. Each analysis was only a matter of minutes on 
laptop (i.e., machines that are slower and have less memory 
than the desktops we use for the analysis of the MPF 
family). Second, the precision was quite good (around 85%), 
but it revealed some flaws in CGS. For example, structures 
with bitfields were not treated properly. Moreover, we had 
problems with pointers to physical hardware devices. The 
analysis cannot find any size information and it therefore 
assumes that the size is zero. This deficiency points out the 
need for user information. We are in the process of 
implementing an interface that a user could use to give such 
information. This experiment was also a good opportunity to 
get feedback from CGS users who are not part of the 
development team. It gave us some usefully usability data. 
For example, it is clear that CGS needs to provide type 
information when the results are scanned by the tool user. It 
was very cumbersome for users to track the type information 
across code and header files. We are therefore implementing 
a function that dumps type information in the database, 
thereby making it directly available to a user. 

Space Station Biological Experimenr Sojiware 

This experiment was the opportunity for us to try CGS on a 
different type of software. The Habitat Holding Rack ("R) 
software is not a flight software system in the sense that it is 
not controlling a spacecraft or a rover; it controls biological 
experiments done on the International Space Station. The 
"R is the central part of the biological and scientific 
experiments to be conducted on-orbit and on the ground for 
the UF-3 and future missions. The Biological Research 
Project Rack Interface Controller (B-RIC) and Centrifuge 
Rack Interface Controller (C-RIC) are the command and 
control components of the HHR. The C-RIC being 
unavailable at the time, CGS was applied only to the B-RIC. 
The B-RIC formats telemetry data received from Payloads 
for download to the ground, and creates HHR and Payload 
Health and Status (H&S) data for transmission to the ISS. 

The B-RIC software is about 50 KLOCs of C code. The 
software is divided into five modules that were analyzed 
separately: 

(1) Video Digitalization Compression Card (VDCC). The 
software module for the VDCC provides the main 

entry points for all modules running on the Card. The 
main module initializes message queues, spawns all 
tasks, and monitors H&S on the Card. It contains 4 
K L O C S .  

High Rate Link Card (HRLC). The HRLC software 
module is the main entry point for all other modules 
running on the Card. Like the VDCC, it initializes 
message queues, spawns tasks, and monitors H a .  It 
contains 16 KLOCs. 

Serial Card 1553 (SC1553). The software module on 
this Card is the 1553 communications link to the HHR. 
It contains 9 KLOCs. 

Serial Card (SERC). The SERC software module is 
the serial communications link to the HHR. It contains 
a bit less than 1 KLOCs. 

Main Controller Card (MCC). This software module is 
the main controller for the HHR. It contains 19 
K L O C S .  

The results of the analyses are quite surprising for us and 
show that we need to adapt CGS to this type of software. For 
example, the precision is 30%, which is quite disappointing. 
Moreover, about 35% of the checks classified as certain 
errors are not errors. After further (manual) investigation, 
we found that this is due to hardware pointers. The isolation 
of the source code verification with CGS without 
attachments to external devices and/or interfaces shows up 
as repeated errors for all instances where there is no 
c o ~ ~ t i v i t y .  For example, in the SERC Module, the 
Payload Manager Function calls the Payload Table. 
Because that Function depends on an external link for 
execution, the CGS Tool tagged all instances of calls as Red 
errors. Anyway, the analysis times are also quite 
disappointing given the sizes of the modules being analyzed. 
In general, the analyses took from 30 minutes to 2 hours, 
except for the VDCC modules which took 14 hours. We are 
still in the process of analyzing these modules to find out 
what causes such long analysis times. Given that these 
analyses were performed on a laptop with poor (memory and 
processing speed) performances, our current guess is that 
CGS spent most of its processing time doing garbage 
collection. This assumption needs to be verified. 

5. LESSONS LEARNED 

The first lesson is that scaling up to large programs requires 
a fine-grained control of the dynamic allocation of data in 
the analyzer. In our case, the use of a garbage collector frees 
us from having to m a g e  all de-allocations, but it forces us 
to be smart in our use of memory allocation. Indeed, the 
garbage collector used in CGS has a limit of 1 GB, which 
cannot be changed. Therefore, we need to ensure that we are 
not allocating more than 1 GB of memory, knowing that the 
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garbage collector might allocate larger chunk of memory 
than is needed by the data we manipulate. Of course, the size 
of the memory blocks allocated by the garbage collector can 
be set to (almost) any arbitrary size. However; reducing the 
size of the blocks also triggers more frequent calls to the 
garbage collector, thus impacting the response time of the 
analysis. 

The second lesson concerns the use of a database to manage 
permanent artifacts. In our original mindset, the SQL 
database operations could be used to efficiently compute 
functions on the artifacts (e.g., alias tables, call table, and so 
on) in the database, rather than having to pull the data out of 
the database, compute the function, and dump the results in 
the database again. This turned out to be an unrealistic 
expectation. Database operations are too slow for that. So, 
the biggest gain in using a database is that it can 
automatically handle distributed requests. Finally, it might 
be possible to optimize the database accesses by breaking 
large tables into hierarchy of small tables. However, this is 
possible only if the keys used to access data in the tables are 
consistent throughout the analysis. 

The third lesson is that distributing the analysis does not 
always pay off, unless you can run the analysis on a truly 
parallel machine. Indeed, in many phases of the analysis the 
network access times (for loading or storing analysis 
artifacts or synchronizing with other processes) outweigh the 
processing time required by the analysis. Therefore, unless 
processes can communicate without going through a 
network, the analysis might be slowed down. Typically, we 
observed that we are not gaining anytlung in terms of time 
when we use more than four processors (which represents 
two machines since each of our machines have dual 
processors). Finally, using PVM to distribute the analysis 
really hampered the debugging of CGS. It was quite hard to 
pinpoint crashes because most analysis processes died 
without giving any information back to the master process. 

6. CONCLUSION 

In this paper, we have given a short introduction to C Global 
Surveyor (CGS), a static analyzer based on Abstract 
Interpretation. CGS can find array-out-of-bound and null 
pointer de-reference errors in embedded C programs. We 
also have reported on the use of CGS on real NASA 
software systems ranging from the flight control software for 
three JPL missions (MPF, DSl, and MER) to software 
controlling experiments on the International Space Station. 
We observed that CGS scales without producing many false 
positives to the large JPL applications (over 500 IUOCs). 
We expected this result since we design our analysis 
algorithms to work well with the software following the 
MPF family. Similarly, the low precision and response times 
of CGS in the analysis of the Habitat Holding Rack software 
are not surprising; we did not specialize CGS for this type of 

software. Anyway, we conjecture that the slow response 
times may be due to running the analysis on under- 
performing hardware (laptop with low processing speed and 
little memory capacity). However, as of now, we can not 
explain what coding practices caused the precision 
problems. Still we are confident that we can tune CGS to 
work well for all these applications, and therefore, be 
applicable to lots of NASA missions. 
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